Οι “αδυναμίες …” της ισοδυναμίας

Μοιραστείτε το!

Ισότητα

Το σύμβολο “=” και η σχέση που παριστάνει δε χρειάζονται ιδιαίτερες συστάσεις:

Από τις πρώτες τάξεις του Δημοτικού, το έχετε συναντήσει, αμέτρητες φορές, σε εκείνες τις περιπτώσεις που δύο μαθηματικά αντικείμενα δε διαφοροποιούνται μέσα στο εννοιολογικό πλαίσιο που ορίζονται.

Για παράδειγμα, 3+2=5,\, 90^{\circ}-45^{\circ }=45^{\circ},\, \vec{\alpha}-\vec{\alpha}=\vec{0} , “Δύο κύκλοι με ίσες ακτίνες είναι ίσοι” κ.ά..

Ισότητα ή Ισοδυναμία;

Από την άλλη μεριά, πόσο εύκολα, αλήθεια, ασπαστήκατε “ισότητες”, όπως,

    \[$\dfrac{1}{3}=\dfrac{2}{6}=\dfrac{3}{9}=\ldots $,\]

όταν τις συναντήσατε για πρώτη φορά, κατά τη μελέτη των κλασμάτων;

Ίσως, ακόμη και τώρα, να νιώθετε άβολα μ΄ αυτήν την ταύτιση διαφορετικών, κατασκευαστικά, μαθηματικών αντικειμένων. Άλλωστε, ο αρχικός χαρακτηρισμός “ισοδύναμα κλάσματα”, που συνήθως ακολουθεί την έννοια του κλάσματος, γρήγορα, προσπεράστηκε χωρίς περαιτέρω αναφορές.

Βέβαια, ενδεχομένως, να μην αναγνωρίζετε καμιά (αλγεβρική) διαφορά μεταξύ των αριθμών \dfrac{1}{3} και \dfrac{2}{6} καθώς, συχνά, τους ταυτίσατε, χωρίς επιφυλάξεις, όσες φορές χρησιμοποιήθηκαν στο πλαίσιο μιας μαθηματικής διεργασίας.

Τί θα συνέβαινε, όμως, π.χ. σε μια απόπειρα να επεκτείνουμε τον ορισμό,

    \[$\alpha ^{\frac{\mu }{\nu }}=\root{\nu }\of{\alpha ^{\mu }},$ $\alpha \geq 0$\]

σε περιπτώσεις όπου \alpha<0;

Σ΄ ένα τέτοιο εγχείρημα, ενώ, για παράδειγμα, μάλλον θα συμφωνούσατε, ξεχωριστά, με καθεμία από τις ισότητες,

    \[$\left( -1\right) ^{\frac{1}{3}}=\root{3}\of{-1}=-1$\]

και

    \[$\left( -1\right) ^{\frac{2}{6}}=\root{6}\of{(-1)^{2}}=1$\]

εύλογα, αντιλαμβάνεστε την “αντίφαση”:

    \[$\left( -1\right) ^{\frac{1}{3}}\neq \left( -1\right) ^{\frac{2}{6}}.$\]

Ένα παρεμφερές “παράδοξο”, από το Κεφάλαιο του Ολοκληρωτικού Λογισμού, εμφανίζεται, εφαρμόζοντας παραγοντική ολοκλήρωση, στο αόριστο ολοκλήρωμα,

    \[$I=\displaystyle\int \frac{1}{x}\mathrm{dx}$,\]

π.χ. στο (0,+\infty ), όπου προκύπτει ότι,

    \[$I=\displaystyle\int \frac{1}{x}\left( x\right) ^{\prime }\mathrm{dx}=x\frac{1}{x}-\int x\left( \frac{1}{x}\right) ^{\prime }\mathrm{dx}=1-\int x\frac{-1}{x^{2}}\mathrm{dx}=1+I$\]

δηλαδή, ότι 0=1!

Άραγε, υπάρχει κάποιο λάθος στους υπολογισμούς ή στις “ισότητες” μεταξύ των παραπάνω ολοκληρωμάτων;

Αν όχι, με ποια έννοια είναι ίσα τα παραπάνω μαθηματικά αντικείμενα; Μήπως, μέσα από από κάποιο πρίσμα, θα μπορούσε να θεωρηθεί σωστή η ισότητα 0=1;

Να ανοίξουμε, σ΄ αυτό το σημείο, μια παρένθεση και να ανακαλέσουμε τον ορισμό του σχολικού βιβλίου για το αόριστο ολοκλήρωμα:

“Το σύνολο όλων των παραγουσών μιας συνάρτησης f σ΄ ένα διάστημα \Delta ονομάζεται αόριστο ολοκλήρωμα της f στο \Delta, συμβολίζεται \displaystyle\int f(x)\mathrm{dx} και διαβάζεται “ολοκλήρωμα εφ του χι ντε χι”.”

Άρα, το αόριστο ολοκλήρωμα είναι σύνολο;

Αλλά, τότε, τι έννοια έχει η ισότητα \displaystyle\int f(x)\mathrm{dx}=F(x)+c όπου F μια παράγουσα της f στο \Delta, που ακολουθεί στο σχολικό βιβλίο επεξηγώντας τον προηγούμενο ορισμό;

Στην πραγματικότητα, εδώ το “=” σημαίνει ότι οι δύο συναρτήσεις έχουν την ίδια “δυναμική” κατά την αντιπαραγώγιση, δηλαδή, αν παραγωγιστούν, τότε προκύπτει ίδιο αποτέλεσμα, ίδια συνάρτηση.

Εξακολουθείτε να πιστεύετε το ίδιο σθεναρά ότι η “ισότητα” 0=1, του παραπάνω παραδείγματος, είναι λανθασμένη;

Αφήστε μια απάντηση

Η ηλ. διεύθυνση σας δεν δημοσιεύεται. Τα υποχρεωτικά πεδία σημειώνονται με *

Αυτός ο ιστότοπος χρησιμοποιεί το Akismet για να μειώσει τα ανεπιθύμητα σχόλια. Μάθετε πώς υφίστανται επεξεργασία τα δεδομένα των σχολίων σας.